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Abstract

The two!dimensional problem for a half space whose surface is traction free and subjected to the e}ects
of heat sources is considered within the context of the theory of thermoelasticity with two relaxation times[
Laplace and Fourier transform techniques are used[ The solution in the transformed domain is obtained by
using a direct approach[ Numerical inversion of both transforms is carried out to obtain the temperature\
stress and displacement distributions in the physical domain[ Numerical results are represented graphically
and discussed[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

During the second half of the twentieth century\ non!isothermal problems of the theory of
elasticity became increasingly important[ This is due mainly to their many applications in widely
diverse _elds[ First\ the high velocities of modern aircraft give rise to aerodynamic heating\ which
produces intense thermal stresses\ reducing the strength of the aircraft structure[ Secondly\ in the
nuclear _eld\ the extremely high temperatures and temperature gradients originating inside nuclear
reactors in~uence their design and operations Nowinski "0867#[

Danilovskaya "0849# was the _rst to solve an actual problem in the theory of elasticity with non
uniform heat[ The problem was for a half!space subjected to a thermal shock in the context of
what became known as the theory of uncoupled thermoelasticity[ In this theory the temperature
is governed by a parabolic partial di}erential equation which does not contain any elastic terms[
It was not much later that many attempts were made to remedy the shortcomings of this theory[

Biot "0845# formulated the theory of coupled thermoelasticity to eliminate the paradox inherent
in the classical uncoupled theory that elastic changes have no e}ect on the temperature[ The
heat equations for both theories\ however\ are of the di}usion type predicting in_nite speeds of
propagation for heat waves contrary to physical observations[

� Corresponding author[
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Lord and Shulman "0856# introduced the theory of generalized thermoelasticity with one relax!
ation time for the special case of an isotropic body[ This theory was extended by Dhaliwal and
Sherief "0879# to include the anisotropic case[ In this theory a modi_ed law of heat conduction
including both the heat ~ux and its time derivative replaces the conventional Fourier|s law[ The
heat equation associated with this theory is hyperbolic and hence eliminates the paradox of in_nite
speeds of propagation inherent in both the uncoupled and the coupled theories of thermoelasticity[
Uniqueness of solution for this theory was proved under di}erent conditions by Ignaczak "0868\
0871# by Sherief and Dhaliwal "0879#\ by Dhaliwal and Sherief "0879# and by Sherief "0876#[ The
state space approach to this theory was developed by Anwar and Sherief "0877# and by Sherief
"0882#[ The fundamental solution for this theory was obtained by Sherief "0875#[ Sherief and
Hamza "0883# have solved a two!dimensional problem for a thick layer[ Sherief and Hamza "0885#
have obtained the solution for two!dimensional axisymmetric problems in spherical regions and
studied wave propagation in this theory[

Green and Lindsay "0861# developed the theory of thermoelasticity with two relaxation times
which is based on a generalized inequality of thermodynamics[ This theory does not violate
Fourier|s law of heat conduction when the body under consideration has a center of symmetry[ In
this theory both the equations of motion and of heat conduction are hyperbolic but the equation
of motion is modi_ed and di}ers from that of the coupled thermoelasticity theory[ This theory
was initiated by Mu�ller "0860#[ It was further extended by Green and Laws "0861#[ The _nal form
used in the present work is that of Green and Lindsay "0861#[ This theory was also obtained
independently by Sžuhubi "0864#[ Longitudinal wave propagation for this theory was studied by
Erbay and Sžuhubi "0875#[ Ignaczak "0867# proved a decomposition theorem[ Sherief "0881#
obtained the fundamental solution for this theory\ formulated the state space approach for one!
dimensional problems Sherief "0882# and solved a one!dimensional thermo!mechanical shock
problem Sherief "0883#[ The boundary integral equation formulation was done by Anwar and
Sherief "0883#[

In this work the authors consider a two!dimensional problem for a half space whose surface is
traction free and subjected to the e}ects of heat sources varying in time within the context of the
theory of thermoelasticity with two relaxation times[ Laplace and Fourier transform techniques
are used[ The solution in the transformed domain is obtained by using a direct approach without
the customary use of potential functions[ This models the industrial problem of welding of very
thick plates by applying heat[ It also models the e}ects of a thermal bomb "e[g[ nuclear# on the
surface of an elastic medium of a very great extent[

1[ Formulation of the problem

We shall consider a homogeneous isotropic thermoelastic solid occupying the half!space y − 9[
The y!axis is taken perpendicular to the bounding plane pointing inwards[ We shall also assume
that the initial state of the medium is quiescent[ The surface of this medium is traction free and
subjected to a heat source of intensity r"x\ t#[ The displacement vector thus\ has components

u �"u\ v\ 9#

and the cubical dilatation e is given by
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e � div u �
1u
1x

¦
1v
1y

[ "0#

The governing equations for generalized thermoelasticity with two relaxation times consist of]

"0# The equation of motion in vector form

r
11u

1t1
�"l¦m# grad e¦m91u−g grad 0T¦n

1T
1t 1\ "1#

which has two Cartesian components

r
11u

1t1
�"l¦m#

1e
1x

¦m
11u

1x1
¦m

11u

1y1
−g 0

1T
1x

¦n
11T
1x 1t1\ "2#

r
11v

1t1
�"l¦m#

1e
1y

¦m
11v

1x1
¦m

11v

1y1
−g 0

1T
1y

¦n
11T
1y 1t1\ "3#

where l\ m are Lame�|s constants\ r is the density\ t is the time variable\ T is the absolute temperature
of the medium\ n is a constant with dimensions of time\ called a relaxation time\ and g is a material
constant given by g �"2l¦1m#at\ at being the coe.cient of linear thermal expansion[

"1# The generalized equation of heat conduction

k91T � rcE 0
1T
1t

¦t
11T

1t1 1¦gT9

1e
1t

\ "4#

where k is the thermal conductivity of the medium\ T9 is a reference temperature\ cE is the speci_c
heat at constant strain and t is another relaxation time[

Applying the div operator to both sides of eqn "1#\ we obtain

r
11e

1t1
�"l¦1m#91e−g91 0T¦n

1T
1t 1\ "5#

where 91 is Laplace|s operator[
The above equations are supplemented with the constitutive equations

sxx �"l¦1m#e−1m
1v
1y

−g 0T−T9¦n
1T
1t 1\ "6a#

syy �"l¦1m#e−1m
1u
1x

−g 0T−T9¦n
1T
1t 1\ "6b#

szz � le−g 0T−T9¦n
1T
1t 1\ "6c#
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sxy � m 0
1u
1y

¦
1v
1x1\ "6d#

sxz � syx � 9[ "6e#

We shall use the following non!dimensional variables

x? � c0hx^ y? � c0hy^ t? � c1
0ht^ u? � c0hu^ v? � c0hv^

t? � c1
0ht^ n? � c1

0hn^ u �
T−T9

T9

^ s?ij �
sij

m

where h �"rcE:k# and c0 � z"l¦1m:r# is the speed of propagation of isothermal elastic waves[
Equation "0# retains its form\ while eqns "2#Ð"5# take the following form "dropping the primes

for convenience#[

b1 11u

1t1
�"b1−0#

1e
1x

¦91u−b 0
1u

1x
¦n

11u

1x 1t1\ "7#

b1 11v

1t1
�"b1−0#

1e
1y

¦91v−b 0
1u

1y
¦n

11u

1y 1t1\ "8#

91u �
1u

1t
¦t

11u

1t1
¦`

1e
1t

\ "09#

b1 11e

1t1
� 91e−b91 0u¦n

1u

1t1\ "00#

where

b �
gT9

m
\ b1 �

l¦1m

m
and ` �

g

kh
[

The constitutive eqns "6# in non!dimensional form can be written as

sxx � b1e−1
1v
1y

−b 0u¦n
1u

1t1\ "01a#

syy � b1e−1
1u
1x

−b 0u¦n
1u

1t1\ "01b#

szz �"b1−1#e−b 0u¦n
1u

1t1 "01c#

sxy �
1u
1y

¦
1v
1x

[ "01d#

The above equations are solved subject to the initial conditions
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u � u � v � 9^ u¾ � u¾ � v¾ � 9 at t � 9\ "02#

and the boundary conditions

syy � 9\ sxy � 9 at y � 9 "03#

qn¦hu � r"x\ t# at y � 9 "04#

where qn denotes the normal component of the heat ~ux vector\ h is Biot|s number\ and r"x\ t#
represents the intensity of the applied heat source[

Using Fourier|s law of heat conduction in non!dimensional form "which is valid for Green!
theory#\ namely

qn � −
1u

1n
\

the condition "04# transforms to

−
1u

1y
¦hu � r"x\ t# at y � 9[ "05#

2[ Solution in the transformed domain

Taking the Laplace transform with parameter s "denoted by a bar# of both sides of eqns "7#Ð
"01#\ we obtain the following set of equations

"91−s−ts1#u¹ � `se¹\ "06#

"91−s1#e¹ �
b

b1
"0¦ns#91u¹\ "07#

b1s1u¹ �"b1−0#
1e¹
1x

¦91u¹−b"0¦ns#
1u¹

1x
\ "08#

b1s1v¹ �"b1−0#
1e¹
1y

¦91v¹−b"0¦ns#
1u¹

1y
\ "19#

s¹ xx � b1e¹−1
1v¹
1y

−b"0¦ns#u¹\ "10a#

s¹ yy � b1e¹−1
1u¹
1x

−b"0¦ns#u¹\ "10b#

s¹ xy �
1u¹
1y

¦
1v¹
1x

\ "10c#

and the Laplace transform of the cubical dilatation "0# becomes

e¹ �
1u¹
1x

¦
1v¹
1y

[ "11#
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We have assumed that the Laplace Transforms of the temperature\ stress components\ displace!
ments\ and the applied heat sources exist[

We now introduce the exponential Fourier transform "denoted by an asterisk# with respect to
the space variable x\ de_ned by

f�"q\ y\ s# � Tð f"x\ y\ s#Ł �
0

z1p g
�

−�

e−iqxf"x\ y\ s# dx\

with its corresponding inversion formula

f"x\ y\ s# � T−0 ð f�"q\ y\ s#Ł �
0

z1p g
�

−�

eiqxf�"q\ y\ s# dq where i � z−0[

We assume that all the relevant functions "temperature\ stress\ [ [ [ \ etc[# are su.ciently smooth
on the real line such that the Fourier transforms of these functions exist[

Taking the Fourier transform of both sides of eqns "06#Ð"11#\ we obtain the following set of
equations

"D1−q1−s−ts1#u¹� � `se¹�\ "12#

"D1−q1−s1#e¹� �
b

b1
"0¦ns#"D1−q1#u¹�\ "13#

"D1−a1#u¹� � iqðb"0¦ns#u¹�−"b1−0#e¹�Ł\ "14#

"D1−a1#v¹� � b"0¦ns#Du¹�−"b1−0#De¹�\ "15#

s¹�xx � b1e¹�−1Dv¹�−b"0¦ns#u¹�\ "16a#

s¹�yy � b1e¹�−1iqu¹�−b"0¦ns#u¹�\ "16b#

s¹�xy � Du¹�¦iqv¹�\ "16c#

e¹� � Dv¹�¦iqu¹�\ "17#

where D �"1:1y#\ and a � zb1s1¦q1[
Eliminating e¹� between eqns "12# and "13#\ we obtain

"D3−ðs1"0¦t¦on#¦s"0¦o#¦1q1ŁD1¦ts3¦s2¦s1q1"0¦t¦on#¦sq1"0¦o#¦q3#u¹� � 9\

"18#

where o �"b`:b1#[
The solution of eqn "18# which is bounded at in_nity can be written as

u¹� � A"k1
0−q1−s1#e−k0y¦B"k1

1−q1−s1#e−k1y\ "29#

where A and B are some parameters depending on q and s\ and k0 and k1 are the roots with positive
real parts of the characteristic equation
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k3−ðs1"0¦t¦on#¦s"0¦o#¦1q1Łk1¦ts3¦s2¦s1q1"0¦t¦on#¦sq1"0¦o#¦q3 � 9[ "20#

k0 and k1 are given by

k1
0\1 � q1¦0

1
"s1"0¦t¦on#¦s"0¦o#2szðs"0¦t¦on#¦0¦oŁ1−3s"0¦ts##[ "21#

Substituting from eqn "29# into eqn "12#\ we obtain

e¹� �
b

osb1
"A"k1

0−q1−s−ts1#"k1
0−q1−s1#e−k0y¦B"k1

1−q1−s−ts1#"k1
1−q1−s1#e−k1y#[

"22#

Now\ since both u¹� and e¹� satisfy eqn "13#\ we obtain the compatibility conditions

"k1
0−q1−s−ts1#"k1

0−q1−s1# � os"0¦ns#"k1
0−q1#\ "23#

and

"k1
1−q1−s−ts1#"k1

1−q1−s1# � os"0¦ns#"k1
1−q1#[ "24#

Using eqns "23# and "24#\ we can write eqn "22# in the simpli_ed form

e¹� �
b

b1
"0¦ns#ðA"k1

0−q1#e−k0y¦B"k1
1−q1#e−k1yŁ[ "25#

Substituting from eqns "29# and "25# into eqn "14#\ then solving the resulting equation\ we obtain

u¹� �
ibq

b1
"0¦ns#ðCe−ay¦Ae−k0y¦Be−k1yŁ\ "26#

where C is a parameter depending on q and s[ Substituting from eqns "29# and "25# into eqn "17#
and solving the resulting equation\ we get

v¹� �
−b

b1
"0¦ns# $

q1

a
Ce−ay¦k0Ae−k0y¦k1Be−k1y%[ "27#

Substituting from eqns "29#\ "25#\ "26# and "27# into eqns "16#\ we obtain

s¹�xx �
b"0¦ns#

b1
ð"b1s1−1k1

0#Ae−k0y¦"b1s1−1k1
1#Be−k1y−1q1Ce−ayŁ\ "28a#

s¹�yy �
b"0¦ns#

b1
ð"a1¦q1#Ae−k0y¦"a1¦q1#Be−k1y¦1q1Ce−ayŁ\ "28b#

s¹�xy �
−iqb"0¦ns#

b1
ð1k0Ae−k0y¦1k1Be−k1y¦

0
a
"a1¦q1#Ce−ayŁ[ "28c#

Taking the Laplace and Fourier Transforms of eqns "03# and "05#\ respectively\ we obtain the
boundary conditions in the transformed domain as

s¹�yy � 9 at y � 9\ "39#
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s¹�xy � 9 at y � 9\ "30#

−Du¹�¦hu¹� � r¹�"q\ s# at y � 9[ "31#

Equations "29#\ "28a# and "28b# together with eqns "39#Ð"31# give

"a1¦q1#A¦"a1¦q1#B¦1q1C � 9[ "32#

1k0A¦1k1B¦
0
a
"a1¦q1#C � 9[ "33#

"h¦k0#"k1
0−q1−s1#A¦"h¦k1#"k1

1−q1−s1#B � r¹�"q\ s#[ "34#

Equations "32#Ð"34# can be solved for the three unknowns A^ B and C[ These solutions are

A �
0
D

ð"a1¦q1#1−3ak1q
1Łr¹�"q\ s#\ "35#

B �
−0
D

ð"a1¦q1#1−3ak0q
1Łr¹�"q\ s#\ "36#

C �
1a

D
"k1−k0#"a1¦q1#r¹�"q\ s#\ "37#

where

D �"h−k0#"k1
0−q1−s1#ð"a1¦q1#1−3ak1q

1Ł−"h−k1#"k1
1−q1−s1#ð"a1¦q1#1−3ak0q

1Ł[

3[ Inversion of the double transforms

We shall now outline the numerical inversion method used to _nd the solution in the physical
domain[

Let f¹ �"q\ y\ s# be the double FourierÐLaplace transform of a function f"x\ y\ t#[ First\ we use the
inversion formula of the Fourier transform mentioned earlier to obtain a Laplace transform
expression f¹"x\ y\ s# of the form

f¹"x\ y\ s# �
0

z1p g
�

−�

eiqxf¹ �"q\ y\ s# dq �X
1
p g

�

9

"cos"qx# f¹�e"q\ y\ s#¦sin"qx# f¹�o"q\ y\ s## dq\

where f¹�e and f¹�9 denote the even and odd parts of f¹ �"q\ y\ s#\ respectively[
The inversion formula for Laplace transforms can be written as

f"x\ y\ t# �
0

1pi g
d¦i�

d−i�

estf¹"x\ y\ s# ds

where d is an arbitrary real number greater than all the real parts of the singularities of f¹"x\ y\ s#[
Taking s � d¦iy\ the above integral takes the form
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f"x\ y\ t# �
edt

1p g
�

−�

eityf¹"x\ y\ d¦iy# dy[

Expanding the function h"x\ y\ t# � exp"−dt# f"x\ y\ t# in a Fourier series in the interval ð9\ 1T Ł\ we
obtain the approximate formula Honig and Hirdes "0873#

f"x\ y\ t# � f�"x\ y\ t#¦ED\

where

f�"x\ y\ t# �
0
1

c9¦ s
�

k�0

ck for 9 ¾ t ¾ 1T\ "38#

and

ck �
edt

T
Reðeikpt:Tf¹"x\ y\ d¦ikp:T#Ł\ "49#

ED\ the discretization error\ can be made arbitrarily small by choosing d large enough Honig and
Hirdes "0873#[

Since the in_nite series in eqn "38# can only be summed up to a _nite number N of terms\ the
approximate value of f"x\ y\ t# becomes

fN"x\ y\ t# �
0
1

c9¦ s
N

k�0

ck for 9 ¾ t ¾ 1T[ "40#

Using the above formula to evaluate f"x\ y\ t#\ we introduce a truncation error ET that must be
added to the discretization error to produce the total approximation error[

Two methods are used to reduce to total error[ First\ the {{Korrecktur|| method is used to reduce
the discretization error[ Next\ the o!algorithm is used to reduce the truncation error and hence to
accelerate convergence[

The Korrecktur method uses the following formula to evaluate the function f"x\ y\ t#]

f"x\ y\ t# � f�"x\ y\ t#−e−1dTf�"x\ y\ 1T¦t#¦E?D\

where the discretization errors =E?D = ð ðED = Honig and Hirdes "0873#[ Thus\ the approximate value
of f"x\ y\ t# becomes

fNK"x\ y\ t# � fN"x\ y\ t#−e−1dTfN?"x\ y\ 1T¦t#\ "41#

where N? is an integer less than N[
We shall now describe the o!algorithm that is used to accelerate the convergence of the series in

equation "38#[ Let N � 1q¦0 where q is a natural number\ and let

sm � s
m

k�0

ck

be the sequence of partial sums of eqn "40#\ we de_ne the o!sequence by
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o9\m � 9\ o0\m � sm

and

op¦0\m � op−0\m¦0¦0:"op\m¦0−op\m#\ p � 0\ 1\ 2\ [ [ [ [

It can be shown that Honig and Hirdes "0873#\ the sequence

o0\0\ o2\0\ o4\0\ [ [ [ \ oN\0

converges to f"x\ y\ t#¦ED−c9:1 faster than the sequence of partial sums

sm\ m � 0\ 1\ 2\ [ [ [ [

The actual procedure used to invert the Laplace transforms consists of using eqn "41# together
with the o!algorithm[ The values of d and T are chosen according to the criteria outlined in Honig
and Hirdes "0873#[

4[ Numerical results

The function r"x\ t# representing the applied heat source was taken as

r"x\ t# � H"a−=x=#

where H is the Heaviside unit step function and a is a constant[ This means that the applied heat
source acts only on a band of width 1a centred around the x!axis on the surface of the half!space
and is zero everywhere else[

The copper material was chosen for purposes of numerical evaluations[ The constants of the
problem were taken as

o � 9[9057\ t � n � 9[91\ a � 9[0\ h � 0[

The computations were carried out for two values of time\ namely t � 9[94 and t � 9[0[ The
numerical technique outlined above was used to obtain the temperature\ displacement and stress
distributions[ In all _gures\ solid lines represent the function when t � 9[0\ while dotted lines
represent the function when t � 9[94[ First\ all the functions were evaluated inside the medium on
the y!axis "x � 9# as functions of y[ The temperature increment u is represented by the graph in
Fig[ 0[ The stress component sxx and syy are shown in Figs 1 and 2\ respectively[ The displacement
component v is shown in Fig[ 3[ We note that\ due to symmetry\ the stress sxy and the displacement
component u vanish identically on the y!axis[ Next\ the functions were evaluated on the surface of
the half!space "y � 9# as functions of x[ The temperature increment u on the surface is shown in
Fig[ 4[ The stress component sxx is shown in Fig[ 5[ The displacement components u and v are
represented in Figs 6 and 7\ respectively[ The stress components sxy and syy vanish identically on
the surface due to the boundary conditions[

In all these _gures\ it is clear that all the functions considered have a non!zero value only in a
bounded region of space and vanish identically outside this region[ This region expands with the
passage of time[ The edge of this region is the wave front which moves with a _nite speed[ This is
not the case for the coupled and uncoupled theories of thermoelasticity where an in_nite speed of
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Fig[ 0[ Temperature distribution on the y!axis[

Fig[ 1[ Tangential stress distribution on the y!axis[

Fig[ 2[ Normal stress distribution on the y!axis[
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Fig[ 3[ Normal displacement distribution on the y!axis[

Fig[ 4[ Temperature distribution on the surface[

Fig[ 5[ Tangential stress distribution on the surface[
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Fig[ 6[ Tangential displacement distribution on the surface[

Fig[ 7[ Normal displacement distribution on the surface[

propagation is inherent and hence all the considered functions have a non!zero "although may be
very small# value for any point in the medium[
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